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Abstract— PhD student Helene J. Levy and Assistant Profes-
sor Brett T. Lopez are currently developing a novel planning
strategy to intelligently sample the state space using motion
primitives when given a coarse reference path generated by a
discrete graph-based search algorithm. By exploiting key infor-
mation inherent to the reference path, the proposed planner
can strategically sample motion primitives in regions known to
make progress to the goal, leading to significant improvements
in computation time and robustness in trajectory generation.
Additionally, this framework allows for sampling in a higher
dimensional state space, i.e. acceleration, which contributes
to smooth kinodynamic path plans. However, the number of
primitives that the planner must generate grows exponentially
with the number of path waypoints and the number of state
samplings. Thus, the planner quickly becomes infeasible for
online deployment. The first half of this thesis presents an in-
depth analysis of selected primitives and several algorithms
for benchmarking performance (greedy, greedy lookahead, and
random). The second half presents initial results using a fully-
connected neural network in the behavior cloning (supervised
learning) paradigm.

I. INTRODUCTION
A. Societal context

Urgent real-world missions, such as those in emergency
response and search-and-rescue operations, require a highly
flexible task force. Leveraging the agility, speed, and ad-
vanced capabilities of UAVs like autonomous quadcopters,
these missions can efficiently tackle urgent situations. In
regions affected by disasters, drones can rapidly assess
damage, find survivors, and deliver essential resources, po-
tentially preventing loss of lives caused by delays in standard
relief procedures. Drones’ capability to quickly collect and
send live data results in faster decision-making and improved
resource distribution. Nevertheless, the use of self-governing
drones for urgent tasks presents significant ethical and pri-
vacy issues, as the need for quick action must be weighed
against the impact on personal freedoms and the importance
of employing this technology responsibly. In addressing these
challenges, it is essential for society to establish clear reg-
ulations, ethical guidelines, and international collaboration
in order to fully utilize autonomous drones for the common
good and minimize potential risks.

B. Technical context

Real-time deployment of autonomous vehicles in large and
complex environments requires efficient, localized path plan-
ning. While quadrotors have achieved top speeds in piloted
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Fig. 1: Path plan through maze of boxes in VECTR lab at UCLA. The
informed motion primitive planner takes in point cloud data and runs a
coarse graph search on the enviroment. After that, motion primitives are
intelligently sampled given information from the coarse path to generate a
smooth, collision free trajectory.

competitions, autonomous motion planning algorithms have
struggled to achieve the low computation time necessary
for practical execution of such fast flights. Motion planning
requires ensuring safety (collision checking) as well as gener-
ating high quality, dynamically feasible paths for a quadrotor
to traverse. It is further complicated by payload constraints
requiring computationally light algorithms for the onboard
hardware. An effective strategy at lowering computation time
has been the use of so-called motion primitives: a library of
pre-determined actions or paths computed offline but selected
online. Motion primitives are short optimized trajectories
with a fixed time horizon allowing for quick generation
compared to single trajectory optimization methods.

C. Contributions

This capstone thesis makes the following contributions:
1) A greedy, greedy-lookahead, and random state sampling

strategies
2) An in-depth analysis of selected state samples
3) Infrastructure for learning-enabled state sampling fea-

tures
4) A simple fully-connected neural network for state sam-

pling

II. STATE OF THE ART

The integration of vehicle dynamics for motion planning
has been a substantial and extensively explored area of
research. Differentially flat systems such as quadrotors are
able to take advantage of polynomial trajectory formulations
generated by solving minimum jerk or snap optimization
problem [1], [2]. One approach to generate an optimal
trajectory for a large environment is to obtain waypoints from
coarse search-based or sampling-based techniques and then
optimize the trajectory between these points [3], [4]. Other
methods involve formulating the free-space of environment



into convex polyhedra or representing trajectories as convex
sets and then solve a convex optimization problem [5]–[7].
While these paths are well constructed, solving optimization
problems online is generally computationally intractable and
may lead to numeric instabilities, especially in large envi-
ronments.

Motion primitives emerged as a compelling solution to
address the computational complexity of trajectory optimiza-
tion methods and generate dynamically feasible paths. By
imposing a fixed time horizon on the optimization problem,
motion primitives may be pre-computed offline, providing
a significant advantage in terms of computation efficiency.
[8] first introduced an efficient method to generate and
check motion primitives for input feasibility. Additionally,
[9] showcased the effectiveness of pre-computed motion
primitives combined with perception for a high-speed flight
applications. While motion primitives are able to achieve
computation speeds necessary for fast autonomous platforms,
they are inherently myopic, limiting their ability to plan for
long-term trajectories.

Kinodynamic motion planning is a field dedicated to
addressing motion planning problems which simultaneously
solve kinematic and dynamic constraints [10]. The term
was coined emphasize the fusion of planners dedicated to
each respective constraint. Recognizing that motion primitive
generation is essentially a form of sampling, it is unsur-
prising that numerous kinodynamic planning works have
incorporated other sampling-based strategies, such as RRT*
and FMT*, into their methodologies [11]–[13]. Other works
explore the integration of motion primitives in a kinodynamic
formulation through graph search algorithms. [14] was one
of the first works to successfully showcase a search-based
algorithm using a lattice of motion primitives for use on
quadcopters. Additionally, [15] introduced a receding hori-
zon framework employing a hybrid A* search over a set of
motion primitives.

III. PROBLEM FORMULATION
A. Notation

Assuming a fixed environment represented by a point
cloud, P , we assign a start position, pstart and goal position,
pgoal. Let the collision-free reference path generated by a
discrete graph search algorithm be composed of node points
n = {n0, n1, ..., nM}. The set of points n is further pruned
to a sparse set of waypoints w = {w0, w1, ..., wN} where
N ≤M . The environment is separated into a set of regions
R = {R0, ...,RN−2}. For each waypoint wi ∈ [w1, wN−1],
there exists an intersecting hyperplane Hi to divide the
neighboring environment into regions Ri−1 and Ri. Let
the set of unit vectors defining reference path headings be
denoted as r = {r̂0, ..., r̂N−2}, where vector r̂i is associated
with the reference path in region Ri. We represent the
set of motion primitives generated at each search point as
s = {s0(t), s1(t), ..., sL(t)}. A motion primitive’s state,
si(t), defined over time horizon, T , is composed of it’s
position, velocity, and acceleration trajectories, i.e., si(t) =
[pi(t),vi(t),ai(t)]

⊤, ∀t ∈ [0, T ].

Fig. 2: The blue dotted line represents the sparse A* trajectory our planner
uses as a reference. A tree of time-optimal motion primitives is sampled at
each waypoint shown in red.

B. System Dynamics for Motion Primitive Generation

Quadcopters are differentially flat systems [16] allowing
for the use of polynomial descriptions of flat state variables
σ =

[
x y z ψ

]⊤
. Here yaw, ψ, is not considered in

planning because it does not affect the coordinate system dy-
namics. In accordance with [2], the quadcopter is represented
by a triple integrator system. Let state vector be defined as
x =

[
x ẋ ẍ

]⊤
=

[
p v a

]⊤
and the control input be

defined as u =
...
x = j. Here, p, v, a, j are position,

velocity, acceleration, and jerk respectively. The quadcopter
is represented by the following linear system.

ẋ(t) = Ax(t) +Bu(t) (1)

where

A =

0 I3 0
0 0 I3
0 0 0

 and B =

00
1


Following polynomial coefficient generation for motion

primitives, they are later pruned according to the following
conditions to satisfy thrust constraints.

∥v∥2 ≤ vmax, ∥a∥2 ≤ amax, ∥j∥2 ≤ jmax.

IV. METHODS

Performing a search over several motion primitives can
be very time consuming to generate and check each motion
primitive for collisions. Thus, in order to achieve real-time
speeds on an autonomous vehicle, it is crucial to limit the
search to areas more likely to take the vehicle to the goal
point. Our planner limits the search by generating motion
primitives with information from a reference path known to
be collision free.

A. Reference Path Generation

We first use A* algorithm to generate a collision-free
reference path, ignoring system dynamics. The path is further
decomposed into a sparse set of waypoints, w, by iterating
through each node and directly drawing a straight line
segment until collision. As shown in Figure 2, the nodes of
this sparse path now serve as waypoints and the line segments
between them are separated into corresponding regions, R.
The waypoints are then are used to build a tree of motion
primitives.



Fig. 3: Expansion of motion primitives (a) shows the set of fixed-end
acceleration motion primitives generated from rest. Final accelerations are
radially sampled with azimuth = [−π, π], zenith = [ 7

18
π, 11

18
π] and rotation

R applied to shift main axis in direction of reference path (b) shows the
set of colinear motion primitives generated from rest

B. Motion Primitive Generation
The motion primitives in this work are derived from a

minimum time optimization problem. The calculations are
repeated three times for each flat variable in the coordinate
plane

[
x y z

]⊤
. First, we assume a double integrator

system. We further refine this path for triple integrator
dynamics.

1) Double Integrator: We begin with known waypoints
and sample velocities

min J =

∫ T

0

1 dt

s.t. ẋ(t) = Ax(t) +Bu(t)

|u(t)| ≤ umax

x(0) = x0, x(T ) = xf

where x = [ p v ]⊤ and the control input u is acceleration a.
From pontryagin’s minimum principle the solution is

known to be of the form

u∗(t) =

{
±umax, 0 ≤ t ≤ ts

∓umax, ts < t ≤ T

2) Triple Integrator:

min J =

∫ T

0

1 dt

s.t. ẋ(t) = Ax(t) +Bu(t)

|u(t)| ≤ umax, |a(t)| ≤ amax

x(0) = x0, x(T ) = xf

where x = [ p v a ]⊤ and the control input u is jerk j.

u∗(t) =



±umax, 0 ≤ t ≤ t1

0, t1 < t ≤ t2

∓umax, t2 < t ≤ t3

0, t3 < t ≤ t4

±umax, t4 < t ≤ T

C. 1D to 3D
We have to solve the double and triple integrator in 3 axes.

We are limited by the longest shortest time horizon.

D. Direction Sampling

In order to ensure forward sampling, two primary direc-
tions are sampled in velocity space. One is represented by
the vector pointing toward the next waypoint and the other
being the normal to the separating hyperplane (we call this
the ”plane normal vector”). Each separating hyperplane is
defined to be the axis of symmetry between path segments
on either side of the current waypoint and is represented by
the set H.

H = {x ∈ R3 : a⊤x+ b = 0} (2)

where

a =
r̂i + r̂i+1

∥r̂i + r̂i+1∥2
b = −a⊤wi+1

E. Pruning Motion Primitives

1) Max State Constraints: The motion primitive path is it-
eratively sampled for violations of maximum state constraints
as discussed in problem formulation.

2) Collision Checking: Collision checking motion primi-
tives adopts the strategy developed in [9], by sampling the
path at the next possible collision using a kd-tree search.

F. Time-Saving Pruning Algorithms

The pruning methods above are purely motivated by safety.
It is also advantageous to prune out primitives for the sake
of planning time, i.e. to prune out (or even, not generate
in the first place) primitives which are unlikely to yield the
path with the fastest execution time. This is because it is
computationally expensive to generate each primitive, taking
about 1ms on a standard laptop.

Let s be the number of state samples at each path
segment. The ”Full” primitive generation algorithm generates
all possible primitives at each waypoint. Thus, at waypoint
number w, the number of generated primitives p = sw. With
the goal of minimizing both planning time and execution
time relative to the Full algorithm, I developed and analyzed
the motion primitive pruning algorithms below.

1) Greedy: Before diving into a learning-enabled ap-
proach, I was advised to develop algorithms that used simple
heuristics in order to be used as benchmark performance
evaluators. My first such algorithm was a greedy algorithm.

In contrast to the Full algorithm, at each path segment, the
Greedy algorithm selects the primitive with the minimum
execution time and prunes out all other primitives. As a
result, the number of generated primitives p at waypoint w
is s, which is constant. 4

2) Greedy Lookahead: Motivated by the result from the
Greedy algorithm, I implemented a ”Greedy Lookahead”
(GLA) algorithm which would aim to address the shortcom-
ings of the former.

The GLA algorithm works as follows, and stops after
processing the second-to-last waypoint:

1) Generate all primitives for next 2 waypoints.
2) Find lowest-cost 2-segment path.



Fig. 4: Diagram of the Full algorithm and the Greedy algorithm.

Fig. 5: An illustrative example for when there are 2 state sample options.
GLA will generate 6 total primitives and find the primitive pair (one parent
and one child) with the minimum total execution time (in this example, the
shadowed purple parent and shadowed purple child). On the next iteration,
GLA will only expand the lowest-cost child and its siblings (the two purple
primitives).

3) Only keep the parent and its children.

(Figure 5)
3) Learning-enabled: Neural networks are non-linear

function approximators that learn complex data distributions
from inputs to outputs. By simply analyzing the path way-
points, it seems possible for a neural network to predict what
endstate (vf and af ) to sample at each path segment.

The distributions of selected endstates for vf (Figure 6)
and af (Figure 7) immediately reveal two trends that can be
learned from the path waypoints alone. As the waypoints get
closer together (”scale” increases), the Full planner selects
more primitive endstates with lower vf magnitude. As way-
points get farther apart (”scale” decreases), the Full planner
selects more primitive endstates with higher af magnitude.

As such, I chose the path waypoints and the initial state
as the inputs to the neural network. I chose the outputs to
be the predicted vf and af magnitude and direction relative
to the plane normal vector defined above. (Figure 8)

As proof of concept, I implemented a simple neural
network architecture:

2 Fully-connected hidden layers
(including Batch normalization, ReLU activation, Dropout

regularization)
Softmax output layer

Fig. 6: Percentage distribution of selected vf . Note that for 0 magnitude,
there is no notion of direction, so -1.0 was selected symbolically.

G. Parameters

Our planner relies on several parameters for operation.
The following parameters were used to perform comparison
metrics and to generate paths in Figure 9.

TABLE I: Algorithm Parameters

vmax amax jmax

10 m/s 10 m/s2 60 m/s3

V. RESULTS

The main goal of this paper was to get a superior motion
primitive algorithm capable of real-time performance.

A. Time-Saving Pruning Algorithms

1) Greedy: The Greedy algorithm performs surprisingly
well when at least one of these conditions are met (Figures
10, 11, 12):

1) waypoints must be relatively far apart from each other,
at least on the order of 1m or 10m

2) the maximum velocity vf must be much larger than the
maximum acceleration af

3) the path segments should not make sharp turns



Fig. 7: Percentage distribution of selected af . Note that for 0 magnitude,
there is no notion of direction, so -1.0 was selected symbolically. Addi-
tionally, the af state options include -90.0 degrees due to the intuition of
centripetal force.

Fig. 8: Problem setup with inputs and outputs.

This makes intuitive sense. Consider a path that contains
a sharp turn between segment s1 and s2. Then at s1,
the Greedy algorithm will myopically select the primitive
endstate with maximum velocity and acceleration in the
direction of s1, when it would have been wiser to ”look
ahead” and slow down in preparation for s2. If the af >> vf ,
then this does not significantly affect execution time because
at s2, the drone dynamics can compensate for this myopic
selection. Similarly, if the waypoints are farther apart from
each other, then the drone has more distance during which
to compensate for the myopic selection.

2) Greedy Lookahead: In general, these were the results:
For planning time: Greedy < GLA < Full
For execution time: Full < GLA < Greedy

(a) Perlin Noise

(b) Random Forest

Fig. 9: Final motion primitive path plans in (a) Perlin noise pointcloud and
(b) a computer generated random forest.

Fig. 10: Greedy pruning generally is only 0.1 seconds slower than the
execution time for Full, while achieving a planning time speedup of 1500x.
However, this is the case for randomly selected points in a 30x30x30m
empty point cloud, in which waypoints are far apart.

Fig. 11: In one trial, I generated a set of randomly selected points and then
scaled them down by a factor of 10, keeping all other simulation parameters
identical. The result was that the Greedy algorithm’s execution time was
much slower for the closer waypoints (0.78 seconds versus 0.01 seconds).

In some paths, GLA seemed yield fast Full-like execution
times.

For planning time: Greedy ≈ GLA << Full
For execution time: Full < GLA < Greedy
However, in other paths, GLA seemed yield slow Greedy-



Fig. 12: As the ratio of vmax/amax increases, all other simulation
parameters remaining the same, Greedy performs worse compared to Full.

Fig. 13: GLA consistently yielded near-identical execution times as Full
(including in cases where Greedy’s execution time was much slower than
Full’s), but consistently about 30x slower planning times than Greedy.

like execution times.
For planning time: Greedy << GLA ≈ Full
For execution time: Full < GLA < Greedy
The execution time for GLA was roughly a few orders of

magnitude slower than Greedy but faster than Full, depend-
ing on the number of state samplings and other parameters.
GLA outperformed Greedy in paths for which ”looking
ahead” by exactly one waypoint was worthwhile, i.e. the
increase in planning time was worth the decrease in execution
time (Figure 13). This naturally led to the question, how can
we develop a threshold or heuristic for whether to ”look
ahead” and by how much? This seemed like a complex
problem that would be appropriate for a machine learning
algorithm.

3) Learning-enabled: After training on a small dataset
with about 100 training examples per class, with a few
hyperparameter sweeps (Figure 14), I attained a test accuracy
of 8.027%. Although this number is far below 100%, since
there are 37 different classification options, random guessing
accuracy would be only 2.703%. Therefore, this basic neural
network shows promise.

Fig. 14: Training and validation loss during training.

Fig. 15: Our proposed planner yields 10x faster planning times and similar
execution times to the state of the art presented by Wang et. al. [17]

VI. SIMULATION RESULTS

See Figure 15 for preliminary results comparing our
planner’s timing performance with state-of-the-art.

VII. CONCLUSIONS

In this work, a new forward-looking framework for gener-
ating and searching over motion primitives was proposed. By
strategically sampling motion primitives based on a reference
path the planner is able to achieve computation speeds
necessary for online planning.

For paths with far-apart waypoints, the greedy approach
achieves near-identical execution time with 100x faster
planning time. Depending on the state sampling choices,
the greedy look-ahead approach can overcome the myopic
property of the greedy approach while maintaining a 10x
faster planning time than the full generation method. Initial
results using a neural network appear promising but require
more work in generating more training data, exploring RNN-
based architectures, and tuning model hyper-parameters.

Future work includes hardware testing to validate the real-
world applicability of our approach, the implementation of a
post-processing smoothing step to further improve the exe-
cution time, and extension to a receding-horizon framework
which enables navigation in unknown environments with
online perception.
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